Although chilled beam systems have been used in Europe and Australia for many years, they are a new concept to many in the U.S. Those interested in learning more about these systems, as with any new concept, are faced with the task of discerning its true strengths and weaknesses. The goal of this article is to investigate the common claims about chilled beam systems. This is part two.

Table 1 demonstrates the impact of these three functions for an example office space. Using the default occupant density from ASHRAE 62.1-2007, the minimum outdoor airflow required for an office space is 0.085 cfm per square foot of floor area.

Table 1

<table>
<thead>
<tr>
<th>Function</th>
<th>Impact on Outdoor Airflow</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primary Airflow</td>
<td>0.085 cfm/ft²</td>
</tr>
<tr>
<td>Dehumidification</td>
<td>47°F dew point</td>
</tr>
<tr>
<td>Heating</td>
<td>55°F indoor dew point</td>
</tr>
</tbody>
</table>

Based on typical occupant latent loads in an office space, if primary airflow is only 0.085 cfm/ft², it must be dehumidified to 47°F dew point to offset the space latent load and maintain the indoor dew point at 55°F (75°F dry bulb and 50 percent RH). However, if primary airflow is increased, the primary air would not need to be dehumidified as much (Table 1).
Finally, based on typical sensible cooling loads in an office space, catalog performance data from several manufacturers of active chilled beams indicates that between 0.35 and 0.40 cfm/ft² of primary air is required to provide the required sensible cooling capacity.

For this same example office space, the design airflow delivered by a conventional VAV system would be 0.90 cfm/ft². At design cooling conditions, primary airflow required for the ACBs serving this space is 60 percent less than for the conventional VAV system. However, this does not translate to a 60 percent reduction in fan energy use, as will be discussed later in this EN under the claimed advantage 3 section.

As you can see from this example (Table 1), the primary airflow required for space sensible cooling in the ACB system is four times larger than the minimum outdoor airflow requirement of 0.085 cfm/ft². Even if this project was being designed to achieve the "Increased Ventilation" credit of LEED 2009 (which requires 30 percent more outdoor air than required by ASHRAE 62.1-2007), the required outdoor airflow would still be much lower than the primary airflow required for space sensible cooling.

A survey of performance data from various chilled beam manufacturers indicates that the typical primary airflow rate for active chilled beams ranges from 0.30 to 0.70 cfm/ft². This is typically higher than the minimum outdoor airflow required by ASHRAE 62.1-2007 for many applications.

Table 1. Zone-level primary airflow for an example office space

<table>
<thead>
<tr>
<th>Description</th>
<th>Formula</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minimum outdoor airflow required (per ASHRAE 62.1-2007)</td>
<td>0.085 cfm/ft² (for LEED® EQ credit, 1.3 x 0.085 = 0.11 cfm/ft²)</td>
</tr>
<tr>
<td>Active chilled-beam system</td>
<td></td>
</tr>
<tr>
<td>Primary airflow required to offset space latent load</td>
<td>0.085 cfm/ft² (DPT<sub>PA</sub>=47°F or W<sub>PA</sub>=47 gr/lb)</td>
</tr>
<tr>
<td></td>
<td>0.11 cfm/ft² (DPT<sub>PA</sub>=49°F or W<sub>PA</sub>=51 gr/lb)</td>
</tr>
<tr>
<td></td>
<td>0.36 cfm/ft² (DPT<sub>PA</sub>=53°F or W<sub>PA</sub>=60 gr/lb)</td>
</tr>
<tr>
<td>Primary airflow needed to induce sufficient room airflow to provide sensible cooling</td>
<td>mfr A: 0.36 cfm/ft² (DBT<sub>PA</sub> = 55°F)</td>
</tr>
<tr>
<td></td>
<td>mfr B: 0.38 cfm/ft² (DBT<sub>PA</sub> = 55°F)</td>
</tr>
<tr>
<td></td>
<td>mfr C: 0.35 cfm/ft² (DBT<sub>PA</sub> = 55°F)</td>
</tr>
<tr>
<td>Conventional VAV system</td>
<td></td>
</tr>
<tr>
<td>Primary airflow needed to provide sensible cooling</td>
<td>0.90 cfm/ft² (DBT<sub>PA</sub> = 55°F)</td>
</tr>
</tbody>
</table>

1 For an office space, Table 6-1 of ASHRAE Standard 62.1-2007, Ventilation for Acceptable Indoor Air Quality, requires 5 cfm/pt (R_j) plus 0.16 cfm/ft² (R_a), and suggests a default occupant density of 5 people/1000 ft²: V_{oz} = (6 cfm/person x 5 people/1000 ft²) + 0.06 cfm/ft² = 0.085 cfm/ft².

2 For moderately active office work, the 2009 ASHRAE Handbook-Fundamentals (Table 1, Chapter 18) suggests a latent load of 200 Btu/pt/person. Using the same default occupant density (5 people/1000 ft²): Q_{latent} = (200 Btu/h/pt/person x 5 people/1000 ft²) x P_t = 1.0 Btu/h/ft² = 0.69 x (64 - 47 gr/lb): V_{PA} = 1.0 Btu/ft² / 0.69 x (64 - 47 gr/lb) = 0.085 cfm/ft², or V_{PA} = 0.11 cfm/ft² (DBT_{PA} = 55°F).

3 For fan coil units, the space sensible cooling load typically ranges from 1.7 to 24 Btu/ft²/person (which equates to about 0.8 to 1.1 cfm/ft² if a conventional VAV system is used). Assuming a space sensible cooling load of 19.5 Btu/ft², a zone cooling setpoint of 75°F, and a primary-air dry-bulb temperature of 55°F, product literature from manufacturer A indicates that four (4) 6-ft long, 4-pipe, 2-way discharge active chilled beams require 0.36 cfm/ft² to offset the design space sensible cooling load. With the same type of chilled beam, manufacturers B and C require about 0.38 and 0.35 cfm/ft² of primary air, respectively.

4 Assuming the same space sensible cooling load of 19.5 Btu/ft², a zone cooling setpoint of 75°F, and a primary-air dry-bulb temperature of 55°F: V_{PA} = 19.5 Btu/ft² / (0.69 x (64 - 55°F)) = 0.90 cfm/ft².
In this case, the primary AHU for an active chilled beam system must be designed to either a) bring in more than the minimum required amount of outdoor air—which will increase energy use in most climates—or b) mix the minimum required outdoor airflow with recirculated air to achieve the necessary primary airflow.

Claimed advantage 2: An ACB system can typically achieve relatively low sound levels. Chilled beams do not have fans or compressors located in (or near) the occupied space, so they have the opportunity to achieve low sound levels. Of course, most VAV systems can also be very quiet when designed and installed properly. Fan-powered VAV terminals do have fans located near the space, so they can be more challenging.

Claimed advantage 3: An ACB system uses significantly less energy than a VAV system, due to 1) significant fan energy savings—because of the reduced primary airflow—2) higher chiller efficiency—because of the warmer water temperature delivered to the chilled beams—and 3) avoiding reheat—because of the zone-level cooling coils.

Is there significant supply-fan energy savings? In some applications, a zone served by active chilled beams may require 60 to 70 percent less primary airflow, at design cooling conditions, than the same zone served by a conventional VAV system (0.36 cfm/ft² versus 0.90 cfm/ft² in the previous office space example). However, the difference in annual fan energy use is likely much less because the VAV system benefits from reduced zone airflow at part load, system load diversity, and unloading of the supply fan.

1) **VAV systems benefit from reduced zone airflow at part load.** An active chilled beam relies on primary airflow to induce room air through the coils inside the beam, so the quantity of primary air delivered to the chilled beams is typically constant (not variable). This means that, for this example, primary airflow is 0.36 cfm/ft² at all load conditions (Figure 4).
In a VAV system, however, primary airflow delivered to the zone is reduced at part load. Assuming a 30 percent minimum airflow setting for the VAV terminal, primary airflow to this example office space varies between 0.90 cfm/ft² at design cooling conditions and 0.27 cfm/ft² at minimum airflow (Figure 4).

If a cold-air VAV system (48°F primary air, rather than the conventional 55°F) is used, however, design airflow for this example office space is reduced to 0.67 cfm/ft², which shrinks the difference even further (Figure 4).

2) VAV systems benefit from load diversity. Because of load diversity, the central supply fan in a multiplezone VAV system does not deliver 0.90 cfm/ft² on a building-wide basis. Assuming 80 percent system load diversity for this example, the supply fan only delivers 0.72 cfm/ft² (the "block" airflow), at design cooling conditions.

For an ACB system, primary airflow delivered to each zone is typically constant (capacity is adjusted by modulating, or cycling, water flow). Therefore, the fan in the centralized, primary AHU must deliver the sum of the zone primary airflows—the "sum-of-peaks" airflow, rather than the "block" airflow—which is 0.36 cfm/ft² for this example.

VAV systems benefit from unloading of the supply fan at part load. But reduced airflow (cfm) at part load is only part of the story. Fan energy depends on both airflow and pressure. In a VAV system, as the supply fan delivers less airflow, the pressure loss through the components of the air distribution system (ductwork, diffusers and grilles, air-handling unit, etc.) decreases. The result is that the fan power decreases exponentially (not linearly) as airflow is reduced. Figure 5 depicts the part-load performance of the supply fan in a typical VAV system, according to ASHRAE Standard 90.1.[2]
Using this performance curve, Table 2 and Figure 6 demonstrate how fan power decreases as the supply fan unloads for this office space example. Again, because of load diversity, the supply fan in the VAV system only delivers 0.72 cfm/ft² at design cooling conditions. For the ACB system, primary airflow (0.36 cfm/ft²), and therefore fan power, remains constant at all load conditions.

Table 2. Example part-load performance of a VAV system supply fan

<table>
<thead>
<tr>
<th>supply fan airflow, % of design</th>
<th>supply fan airflow, cfm/ft²</th>
<th>supply fan power², bhp/1000 ft²</th>
</tr>
</thead>
<tbody>
<tr>
<td>100%</td>
<td>0.72¹</td>
<td>0.76²</td>
</tr>
<tr>
<td>90%</td>
<td>0.65</td>
<td>0.63</td>
</tr>
<tr>
<td>80%</td>
<td>0.58</td>
<td>0.51</td>
</tr>
<tr>
<td>70%</td>
<td>0.50</td>
<td>0.40</td>
</tr>
<tr>
<td>60%</td>
<td>0.43</td>
<td>0.31</td>
</tr>
<tr>
<td>50%</td>
<td>0.36</td>
<td>0.22</td>
</tr>
<tr>
<td>40%</td>
<td>0.29</td>
<td>0.15</td>
</tr>
<tr>
<td>30%</td>
<td>0.22</td>
<td>0.09</td>
</tr>
<tr>
<td>20%</td>
<td>0.14</td>
<td>0.05</td>
</tr>
<tr>
<td>10%</td>
<td>0.07</td>
<td>0.01</td>
</tr>
</tbody>
</table>

¹Assuming 80% system load diversity, design airflow for the supply fan is 0.72 cfm/ft² (0.80 x 0.90 cfm/ft²).
²Assuming total static pressure of 4 in. H₂O and 60% fan efficiency: bhp = (0.72 cfm/ft² x 4 in. H₂O) / 8356 x 0.601 = 0.00076 bhp/ft² or 0.76 bhp/1000 ft².
³Part-load fan power determined using Table G3.1.15 (depicted in Figure 5f, Appendix G, ASHRAE/ESNA Standard 90.1-2007, Energy Standard for Buildings Except Low-Rise Residential Buildings).

Figure 6. Supply fan power at part load (ACB vs. conventional VAV)
Notice that as soon as the VAV supply fan unloads below 68 percent of design fan airflow, the conventional VAV system is actually using less fan energy than the constant-volume primary AHU fan in the ACB system (Figure 6). For a cold-air VAV system, this threshold increases to 80 percent of design fan airflow (Figure 7).

Considering that the central supply fan in a VAV system typically operates at less than design airflow for much of the year, the actual difference in fan energy use between the two systems may be small. And in climates with several months of cold weather, the VAV system might actually use less fan energy than the ACB system over the year.

When operation of the system is considered over the entire year, the difference in fan energy use is much less than the difference in zone primary airflow (at design cooling conditions) might suggest. The actual difference depends on climate, building usage, and design of the air distribution system, so it requires a whole-building energy simulation.

A business of Ingersoll-Rand

Trane believes the facts and suggestions presented here to be accurate. However, final design and application decisions are your responsibility. Trane disclaims any responsibility for actions taken on the material presented.

CONGRATULATIONS!
NEW NEBB TECHNICIAN

Robert Cortez
ACCO
ASHRAE Hawaii Chapter’s November meeting was held at the Plaza Club Honolulu. The meeting topic was Testing, Adjusting, Balancing Roundtable, and the 3 speakers did a great job reinforcing the values of NEBB and sharing interesting points about our profession. Steve Smith, President of the Northern California/Hawaii NEBB Chapter was one of the speakers. Ryan Chang, a NEBB Certified Professional with TAB Engineers, LLC was the moderator for the event.
Therma Corporation, founded in 1967 by Joe and Nicki Parisi, is a full-service design/build mechanical contractor located in San Jose, California. Therma Corporation performed the mechanical installation of many of the founding semiconductor, pharmaceutical, biotechnology, and medical facilities in the San Francisco Bay Area and many are still Therma’s valued customers today. Therma has also performed HVAC installation in local office and public buildings that total millions of square feet. Therma has a solution-based approach that is tailored to each client, resulting in efficient and economical designs. Whether it’s a “one off” custom part or a full-service design/build mechanical system, Therma Corporation is an expert at finding the perfect configuration for each client. If it can be imagined - Therma can build it.

Therma is always striving to improve and develop new construction methods that utilize the most current technology to facilitate today’s needs as well as looking ahead to future demands. Therma’s 280,000-square-foot headquarters includes a 60,000-square-foot ASME-certified fabrication shop that incorporates automated systems, lasers and the newest welding technology. The duct fabrication and pipe prefab facilities are the most state-of-the-art in Northern California. Therma Corporation embraces change and innovation to continually reinvent itself.

In 1998, then-President Bill Clinton held a roundtable at Therma Corporation to learn more about its “work smart” culture and history of success. And in 2013, Joe and Nicki Parisi, were awarded honorary Doctorates of Humane Letters from San Jose State University for their impact on the innovative growth of the Bay Area’s mechanical industry.

Therma Corporation employs the most highly trained and experienced designers, installers, and service technicians. Therma’s talented engineering and project management team can take the most complicated design build project from schematic design all the way to the completed as-built and commissioning phase of construction. Therma’s detailers utilize the most current CAD software which includes Building Information Modeling (BIM) providing 3D imaging for design coordination with other trades. Therma Corporation employs more pipe fitter, plumber and sheet metal union trained craftsmen than any other Bay Area mechanical contractor.

Therma Corporation has been a NEBB certified firm since 1979. Being NEBB certified complements Therma as a company by delivering to its clients a turn-key product from conceptual design to project completion by providing final Test, Adjust and Balance of the installed systems. The NEBB logo assures the client that the system is performing at the highest efficiency and has been adjusted to operate as designed. Therma is proud to be a part of NEBB because “NEBB is the
premier internationally recognized certification association for firms that deliver high performance building systems”. The NEBB stamp of approval on each complete project report instills industry recognized confidence.

Therma currently employs two NEBB Certified Professionals. Troy Stenstrom graduated with a HVAC Engineering Technology degree from Cal-Poly San Luis Obispo and is a NEBB Certified Professional in the Testing, Adjusting and Balancing (TAB), Cleanroom Performance Testing (CPT), and Sound and Vibration (S&V) disciplines. Long Nguyen graduated with an Electrical Engineering degree from San Jose State University and is a NEBB Certified Professional in the CPT and S&V disciplines. Therma Corporation is also recognized by Sheet Metal Workers’ International Association ANSI Accredited International Certification Board (ICB/TABB) as a TAB, Sound and Vibration Testing and HVAC Fire Life Safety Level 1 and 2 Certified Firm. Therma’s TAB department offers the following services:

- Testing, Adjusting and Balancing (NEBB and ICB/TABB certified professional)
- HVAC Retro-Commissioning (RCx)
- Duct Leakage Testing per SMACNA or as specified
- Cleanroom Performance Testing (CPT) (NEBB certified professional)
- Biological Safety Cabinet (BSC) (NSF accredited field certifier)
- Laboratory Fume Hood Testing and Certification (ICB/TABB certified professional)
- Sound and Vibration Testing (NEBB and ICB/TABB certified professional)
- As-built mechanical drawing services
- HVAC system installation, operational analysis, and troubleshooting
- Fire/Smoke Control System Testing (ICB/TABB certified professional)
- Calibration services (Directly traceable to the National Institutes of Standards and Technology (NIST))

Therma’s TAB department performs in-house design build services as well as independent plan and specification projects.

Therma Corporation has completed some of the most technically advanced projects in Silicon Valley and the San Francisco Bay Area for nearly 50 years. They continue to illustrate their ability to meet demanding schedules and budgets while providing the highest levels of quality making them a leader in the industry. Over the years, Therma has completed projects for customers such as Intel, IBM, Applied Materials, Apple, Google, Facebook, Stanford University, Santa Clara University, Digital Realty Trust and many more.
NEBB 2015 ANNUAL CHAPTER MEETING

Waikiki, Hawaii
Saturday, April 18, 2015
6:30 a.m.—7:30 a.m.
Hyatt Regency Waikiki Beach
Resort & Spa
Tel: +1.808.923.1234
Fax: +1.808.926.3415
Website: http://waikiki.hyatt.com/

Northern California/Hawaii NEBB
7100 Stevenson Blvd.
Fremont, CA 94538
510/386-1270
Upcoming Events

NEBB CLEANROOM PERFORMANCE TESTING CERTIFIED TECHNICIAN SEMINAR AND NEBB FUME HOOD TESTING SEMINAR FOR CERTIFIED PROFESSIONALS

April 13-15, 2015
Honolulu, Hawaii

Contact the NEBB Office to sign up or to receive more information at www.nebb.org

NEBB ANNUAL CONFERENCE

April 16-18, 2015
Hyatt Regency Waikiki Beach Resort & Spa
Hawaii

Contact the NEBB Office to sign up or to receive more information at www.nebb.org

NEBB CHAPTER ANNUAL MEETING

April 17, 2015
Hyatt Regency Waikiki Beach Resort & Spa
Hawaii

Contact the NEBB Chapter to sign up or to receive more information

TAB CERTIFIED PROFESSIONAL REVIEW SEMINAR

May 25-27, 2015
Arlington, VA

Contact the NEBB Chapter to sign up or to receive more information

NEBB WEBINARS AND EDUCATIONAL SEMINARS

For More Training Information visit www.nebb.org.

Northern California/Hawaii NEBB

7100 Stevenson Blvd.
Fremont, CA 94538

Phone: 510-386-1270
E-mail: akearns@nocalhawaiinebb.org
www.nocalhawaiinebb.org